Microgels enable capacious uptake Walter Richtering

Microgels enable capacious uptake and controlled release of architecturally complex macromolecular species

Stefan Walta, Dmitry V. Pergushov, Alex Oppermann, Alexander A. Steinschulte, Karen Geisel, Larisa V. Sigolaeva, Felix A. Plamper, Dominik Wöll, Walter Richtering, Polymer 119 (2017) 50-58, DOI: 10.1016/j.polymer.2017.05.008

Abstract:This study highlights the use of microgels as containers of high capacity for uptake and triggered release of multi-functional guests. As a model guest, heteroarm star-shaped copolymers (miktoarm stars) are chosen, as their certain arms could carry different active moieties, while other arms could act as “stickers” to the microgel host. The miktoarm stars are able to penetrate into the microgels to compensate their negatively charged groups.. Furthermore, a jump-wise increase of ionic strength in solutions of the complexes triggers the complete release of the miktoarm stars from the microgel, and the system stays always colloidally stable. Thus, microgel-based polylectrolyte complexes provide opportunities for many important applications, especially in targeted/controlled delivery.


  Cover ACS Special Issue 2017

Plamper, F. A.; Richtering, W. Functional Microgels and Microgel Systems. Accounts of Chemical Research 2017, 50, 131–140


  Cover of the journal PCCP 19 2017 showing Lucio Isa

Compression and deposition of microgel monolayers from fluid interfaces: particle size effects on interface microstructure and nanolithography

L. Scheidegger, M.A. Fernandez-Rodriguez, K. Geisel, M. Zanini, R. Elnathan, W. Richtering and L. Isa
Physical Chemistry Chemical Physics, 2017, 19(13), 8671-8680.

Controlling the microstructure of monolayers of microgels confined at a water/oil interface is the key to their successful application as nanolithography masks after deposition on a solid substrate. Previous work demonstrated that compression of the monolayer can be used to tune the microgel arrangement and to explore the full two-dimensional area–pressure phase diagram of the particles trapped at the interface. Here, we explore a new size range, using microgels with 210 nm and 1.45 μm bulk diameters, respectively.


  Functional Microgels und Microgelsystems AK Richtering

Functional Microgels and Microgel Systems

F. A. Plamper and W. Richtering
Acc. Chem. Res., 2017, 50(2), 131-140.

Microgels unite properties of very different classes of materials. They allow combining features of chemical functionality, structural integrity, macromolecular architecture, adaptivity, permeability, and deformability in a unique way to include the "best" of the colloidal, polymeric and surfactant worlds. This will open the door for novel applications in very different fields such as, e.g., in sensors, catalysis, and separation technology.

DOI: 10.1021/acs.accounts.6b00544


  Illustration for paper Dominik Wöll

3D Structures of Responsive Nanocompartmentalized Microgels

A. P. H. Gelissen, A. Oppermann, T. Caumanns, P. Hebbeker, S. K. Turnhoff, R. Tiwari, S. Eisold, U. Simon, Y. Lu, J. Mayer, W. Richtering, A. Walther, D. Wöll
Nano Letters, 2016.

A combination of in situ electron microscopy and superresolved fluorescence localization microscopy allows for a determination of 3D compartmentalization of core-shell microgel structures. A software package to evaluate 2D microscopy images to obtain 3D structures is provided.

DOI: 10.1021/acs.nanolett.6b03940



The Next Step in Precipitation Polymerization of N-Isopropylacrylamide: Particle Number Density Control by Monochain Globule Surface Charge Modulation.

O. L. J. Virtanen, M. Brugnoni, M. Kather, A. Pich, W. Richtering
Polymer Chemistry, 2016, 7, 5123-5131.

DOI: 10.1039/C6PY01195K


  Multi-Shell Hollow Nanogels with Responsive Shell Permeability AK Richtering

Multi-Shell Hollow Nanogels with Responsive Shell Permeability

A. J. Schmid, J. Dubbert, A. A. Rudov, J. S. Pedersen, P. Lindner, M. Karg, I. I. Potemkin and W. Richtering
Scientific Reports, 2016, 6, Article number: 22736.

DOI: 10.1038/srep22736



Persulfate Initiated Ultra-Low Cross-Linked Poly(N-Isopropylacrylamide) Microgels Possess an Unusual Inverted Cross-Linking Structure

O. L. J. Virtanen, A. Mourran, P. T. Pinard, W. Richtering
Soft Matter 2016, 12, 3919–3928.
DOI: 10.1039/C6SM00140H

  Hollow and Core–Shell Microgels at Oil–Water Interfaces

Hollow and Core–Shell Microgels at Oil–Water Interfaces: Spreading of Soft Particles Reduces the Compressibility of the Monolayer

K. Geisel, A. A. Rudov, I. I. Potemkin and W. Richtering
Langmuir, 2015, 31 (48),13145–13154.
DOI: 10.1021/acs.langmuir.5b03530


JARA-SOFT: Soft Matter Science made in Aachen und Jülich

Sixt JARA-Section starts wirth great kick-off
Read more

  Core–Shell–Shell and Hollow Double-Shell Microgels with Advanced Temperature Responsiveness

Core–Shell–Shell and Hollow Double-Shell Microgels with Advanced Temperature Responsiveness

Janine Dubbert, Katja Nothdurft, Matthias Karg and Walter Richtering
Macromol. Rapid Commun., 2015, 36(2), 159-164.
DOI: 10.1002/marc.201400495

  Methanol-induced change

Methanol-induced change of the mechanism of the temperature- and pressure-induced collapse of N-Substituted acrylamide copolymers

Christian H. Hofmann, Sebastian Grobelny, Paweł T. Panek, Laura K. M. Heinen, Ann-Kristin Wiegand, Felix A. Plamper, Christoph R. Jacob, Roland Winter and Walter Richtering
Journal of Polymer Science Part B: Polymer Physics, 53(7), 532-544, 2015.
DOI: 10.1002/polb.23676

  Effect of the Molecular Architecture

Effect of the Molecular Architecture on the Internal Complexation Behavior of Linear Copolymers and Miktoarm Star Polymers

Pascal Hebbeker, Felix A. Plamper and Stefanie Schneider
Macromolecular Theory and Simulations, 2015.
DOI: 10.1002/mats.201400077

  How Hollow Are Thermoresponsive Hollow Nanogels?

How Hollow Are Thermoresponsive Hollow Nanogels?

Janine Dubbert et al.
Macromolecules, 47 (24), 8700–8708, 2014.

DOI: 10.1021/ma502056y

  Highly ordered 2D microgel arrays

Highly ordered 2D microgel arrays: compression versus self-assembly

Karen Geisel, Walter Richtering and Lucio Isa
Soft Matter, 10, 7968-7976, 2014. DOI: 10.1039/C4SM01166J
2014 Soft Matter Hot Papers